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Abstract
The field-emission properties of individual zinc oxide (ZnO) nanowires,
grown by a solid–vapour phase thermal evaporation process, were studied in
situ by transmission electron microscopy (TEM) using a home-made piezo-
manipulator. The results indicate that ZnO nanowires present an outstanding
field-emission property with low turn-on voltage and high emission current; the
proper linearity of 1/V –ln(I/V 2) curves basically accords with the Fowler–
Nordheim model, and the dependence of the field-enhancement factor β on
the distance d between the nanowire tip and its counter anode fits a linear
relationship. The investigations show that ZnO nanowires show promise for
potential applications as field emitters.

(Some figures in this article are in colour only in the electronic version)

Due to the promising potential of extensive applications, one of the present fields of research
of one-dimensional (1D) nanomaterials is to investigate their properties arising from quantum
confinement, such as electronic quantum transport and enhanced radiative recombination of
carriers, which can be used for the next generation of computational devices and nanoscale
lasers, respectively. The other aspect focuses on the geometric effects; for example, their
high flexibility and hardness resulting from the defect-free lattice can be used to reinforce
other materials, and the high aspect ratio makes them genuine candidates of electron field
emission because the tip geometry and the apex structure are essential aspects of the field-
emission properties [1–6]. As an oxide, ZnO exhibits a high melting point and it is quite
stable under harsh environments. Therefore, ZnO-based 1D nanostructures are candidates as
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nanoscale lasers crystals and an appropriate alternative to carbon nanotubes (CNTs) for field-
emission devices. So far, various types of 1D ZnO nanostructures, such as nanowires, nanorods,
nanorings, nanobelts, nanocombs, and so on, have been synthesized [6–13]. In the meantime,
besides the photoluminescence [14–16], magnetism [17, 18], electric transport [19–21]
and mechanical properties [22–24] of 1D ZnO, field-emission properties have also been
studied [25–27]. But in the previous research, the field emission of a single ZnO nanowire
has not been discussed, although the field-emission currents of mass ZnO nanowires have been
measured and the effects of morphology of ZnO nanostructures on the property have been
investigated.

In this work, the field-emission properties of a single ZnO nanowire were studied using a
piezo-manipulator by an in situ TEM method. The field-emission properties, including the
turn-on voltage (the electric field at the voltage that produces an emission current density
of 10 μA cm−2), emission current, 1/V –ln(I/V 2) curves and the dependence of field-
enhancement factor β on the distance d between the nanowire tip and its counter anode were
investigated. The research results suggest that ZnO nanowires show promise for potential
applications as field emitters.

The ZnO nanowires were fabricated and characterized as reported in a previous paper [24].
In brief, ZnO nanowires were synthesized through pure zinc powder evaporation without
a catalyst in a tubular furnace at a temperature of 650 ◦C. Scanning electron microscopy
(SEM: Cambridge S360) and high-resolution transmission electron microscopy (HRTEM:
JEOL-2010) were utilized to characterize the morphologies and structures. SEM and HRTEM
researches revealed that the as-synthesized ZnO nanowires had lengths of over several tens to
hundreds of micrometres and diameters ranging from 40 to 120 nm, and that they grew along
[0001].

For in situ TEM measurement and imaging, a special TEM specimen holder was built for
a JEOL 2010 FEG TEM operated under a vacuum of 10−7 Torr and at room temperature. An
electrochemically etched tungsten needle served as the movable cathode; its opposite gold wire
was the anode. The gold wire was melted into a ball shape at end. The distance between two
electrodes can be precisely controlled by the piezo-manipulator. The individual ZnO nanowire
was attached onto the tungsten tip by using graphite paste. The SEM image of ZnO nanowires
is shown in figure 1(a) and the specimen holder with the two electrodes of the measuring device
is shown in figure 1(b). The TEM beam was blanked out during the field-emission measurement
and the nanowire was discharged in advance. Figures 1(c) and (d) show nanowires No. 1 and
No. 2, respectively, fixed on the tungsten tip for field-emission measurement.

To study the field-emission properties and the dependence of the field-enhancement factor
on interelectrode distance (between the nanowire tip and its counter electrode, denoted by
d), different nanowires were adopted and field-emission measurement was performed for a
serial of d-values for each nanowire. The field voltage applied on nanowires with different
interelectrode distances was increased to the maximum experimental voltage value of 500 V in
steps of 2 V. Because the nanowires are easily destroyed under the very high emission current
density for a very close distance, it is hard to use one nanowire to get the all data at different
distance range. So the data from two representative nanowires are shown. The corresponding
field voltage versus field emission current (V –I ) curves are shown in figures 2(a) and (b); the
turn-on voltage and the maximum field-emission current (that is the emission current obtained
under the maximum experimental voltage value of 500 V) of single ZnO nanowires are shown
in table 1. Results indicated that the turn-on voltage decreased with decreasing the distance d ,
and the maximum field-emission current decreased with increasing the distance d .

The electron field-emission properties are usually analysed by using the Fowler–Nordheim
(FN) model [25–27]. FN curves (1/V –ln(I/V 2), where I is the emission current and V is the

2



J. Phys.: Condens. Matter 19 (2007) 176001 Y Huang et al

     

Figure 1. (a) SEM image of ZnO nanowires, (b) set-up of the in situ measurement with a tungsten
needle as the movable cathode and gold wire as the anode, (c) TEM image of nanowire No. 1 fixed
on the tungsten tip, and (d) TEM image of nanowire No. 2 fixed on the tungsten tip.

Table 1. Turn-on voltage and field-emission current at the maximum experimental voltage at
different interelectrode distances.

Sample Interelectrode Turn-on voltage Field-emission current at
No. distance, d (μm) (V) 500 V (A)

1
1.5 298 3.69 × 10−6

3 304 3.29 × 10−6

6 312 2.85 × 10−6

2

12 290 4.81 × 10−6

24 330 2.56 × 10−6

50 348 2.10 × 10−6

100 384 4.89 × 10−7

200 466 5.90 × 10−8

applied voltage) are shown in figure 3. The curves can be approximately fitted to a straight line,
i.e. the curves are consistent with the FN mechanism by exhibiting linear dependence.

The logarithmic equation of the FN model can be expressed as

ln

(
J

E2

)
= ln

(
A

ϕ

)
− Bϕ3/2

E
(1)

where J is the current density (A cm−2), E is the applied field (V cm−1), A and B are constants
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Figure 2. (a) V –I (field voltage versus field-emission current) curves of nanowire No. 1 and
(b) V –I curves of nanowire No. 2 at different interelectrode distances.

(A = 1.56×10−10 (A V−2 eV), B = 6.83×103 (eV−3/2 V μm−1)), and ϕ is the work function
of ZnO.

The local electric field E is usually related to the applied voltage V ,

E = βV/d (2)

where d is the interelectrode distance; β quantifies the ability of amplifying the average field
and is named the field-enhancement factor. Then equation (1) can be written as

ln

(
I

V 2

)
= ln

(
Aβ2

d2ϕ

)
− Bϕ3/2d

βV
. (3)

Equation (3) reveals that the slope k of the FN curve is determined by two factors: the
field-enhancement factor β and the work function ϕ. The expression for k is

k = −Bϕ3/2d/β (4)

where B = 6.83 × 103 eV−3/2 V μm−1, ϕ = 5.3 eV. Slopes of FN curves with different
interelectrode distances can be calculated according to the data in figure 3. The values of β
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Figure 3. (a) FN (1/V –ln(I/V 2)) curves of nanowire No. 1 and (b) FN curves of nanowire No. 2
at different interelectrode distances.

obtained are shown in table 2. The field-enhancement factor β is measured to be several tens
to several thousands, and it can be basically fitted that β increases linearly with the distance d
increasing from 1.5 to 6 μm (sample No. 1) and from 12 to 200 μm (sample No. 2) respectively,
as shown in figure 4.

Generally, the field-enhancement factor depends on geometry parameters, including the
interelectrode distance d , wire length l, and apex radius r . In our study, the anode can be
thought of as a plane electrode, and the cathode as a long needle. Through experiments and
simulations, Xu et al [28] pointed out that such emission is different from the tip–tip or plane–
plane model, but is a tip–plane emission. In their studies, the β-value of a carbon nanotube was
found to be a negative power exponential of r , i.e. β ∝ r−0.5; the nanotube length has nearly
no influence on β , and the β-value increases linearly on increasing the distance d . Comparing
the experimental conditions and results, the field emission of an individual ZnO nanowire is
similar to that of a carbon nanotube and accords with the tip–plane model.

In summary, ZnO nanowires were synthesized by a solid–vapour phase thermal
evaporation process, and the field-emission properties of individual ZnO nanowires were
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Figure 4. Curves of field-enhancement factor β versus interelectrode distance d of nanowires.

Table 2. Interelectrode distance, slope of FN curves and field-enhancement factor of ZnO
nanowires.

Sample Interelectrode Slope of FN Field-enhancement
No. distance, d (μm) curves (k) factor (β)

1
1.5 −2585 48
3 −3154 79
6 −3319 150

2

12 −2642 378
24 −3767 530
50 −3753 1110

100 −3489 2388
200 −2930 5687

studied by an in situ TEM method using a home-made piezo-manipulator. The single ZnO
nanowire presents outstanding field-emission property with low turn-on voltage and high
emission current. The turn-on voltage decreases with decreasing the interelectrode distance
d , and the maximum field-emission current decreases with increasing the distance. The
1/V –ln(I/V 2) curves are consistent with the Fowler–Nordheim mechanism by exhibiting
linear dependence. On the other hand, the dependence of the field-enhancement factor
β on the interelectrode distance can be fitted to a linear relationship, i.e. the factor
increases linearly from several tens to several thousands as the distance increases. Based
on the experimental results, ZnO nanowires are likely to be potential candidates as field
emitters.
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